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On the free convection boundary layer on a vertical plate
with prescribed surface heat flux
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Abstract. The free convection boundary layer on a vertical plate with a prescribed surface heat flux proportional to
(1 + x2 )' (/A a constant) is discussed. For /x > - 2 the boundary-layer solution develops from a similarity solution
valid for x small to the one valid for x large. However, with Au - - 2 the similarity equations for x large are not
solvable and the behaviour for large x in this case is discussed. It is found that there are two cases to consider,
namely l <- and /A = - . In both cases the leading-order problem is homogeneous involving an arbitrary
constant which is determined from an integral property of the full boundary-layer problem. However, in the former
case the asymptotic behaviour is algebraic, with the perturbation to the leading-order solution, arising from the heat
flux boundary condition, being of O[x'+2"]. The latter case also involves logarithmic terms, with the perturbation to
be leading-order solution now being of O[(log x)-l].

1. Introduction

In a recent paper [1] we considered the similarity solutions for free convection boundary-
layer flow on a vertical plate with a prescribed surface heat flux. These similarity equations
were derived originally by Sparrow and Gregg [2] and require a surface heating rate
proportional to xA (where x is the co-ordinate measuring distance along the plate from the
leading edge and A is a constant). It was shown in [1] that the equations have a solution
satisfying all the required boundary conditions only if A > -1, with the solution becoming
singular as A-- -1; the nature of the singularity at A = -1 was also discussed in [1].

In the context of more general free convection boundary-layer flows, these similarity
solutions can be regarded as giving the behaviour near a leading edge (x small) or as
asymptotic solutions (x large) with there being a transition between the two flow regions,
obtained, say, by a numerical integration of the full boundary-layer problem. A solution
procedure described, for example, by Merkin [3] or Hunt and Wilks [4]. A question that
then arises is how would the boundary-layer solution develop if for small x, the solution were
given by a similarity form for which a solution is possible (i.e. A> -1) but attempted to
reach asymptotic conditions for which a similarity solution were not possible (i.e. with
A -1). It is this question that we attempt to answer in this paper.

To fix things we specify a (non-dimensional) prescribed wall heat flux

T) 0= -(l + X2)M (1)
dy 

where T and y are the (non-dimensional) temperature difference and normal co-ordinate
respectively and , is a constant. From (1) we see that, for x < 1, (d T/ay)y= - -1, while, for
x > 1, ( T/dy)y=0 -x 2 M, so that though it is possible to write down similarity equations for
both x small and x large, in the latter case these possess a solution only if we take > - .
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As we shall see, for our discussion, the precise form that the surface heat flux takes is not
important, only that it has the functional forms for x small and x large given above.

To start we obtain numerical solutions of the full boundary-layer problem with the
prescribed wall heat flux given by (1) using the method of continuous transformations [4, 5].
These integrations show, as expected, that for values of / > - , the solution develops
smoothly from the similarity solution valid for x small to that appropriate for x large.
However, when we take values of u <- , we still find that the solution develops an
asymptotic structure for x large, which cannot now be given by the corresponding similarity
form. When we analyse this asymptotic behaviour in more detail we find that the leading-
order solution is given by the similarity equations corresponding to taking = - 2, but now
with homogeneous boundary conditions. This solution contains an arbitrary constant which is
determined from an integral condition for the whole boundary-layer flow. The first perturba-
tion to this leading-order problem arises from the application of the wall heat flux condition
and is of O(x+2').

This then leaves the final case which we need to consider, namely , = - . Here we still
find an asymptotic structure as for the case /x < - 2, but now this is modified by the inclusion
of terms involving log x, with, for example, the plate temperature being of O(x-315 (log X) 4 /5 )
for x large.

2. Equations

The (non-dimensional) equations governing the free convection boundary layer on a vertical
plate are, from [1],

_ T+ (2a)
ay 0y dx ax 9y2 dy 3

dq aT _d aT 1 2T
ay ax x dy Pr dy 2

where ¢q is the stream function, defined in the usual way, and Pr is the Prandtl number. The
boundary conditions to be applied are, from (1),

'O, do =0O dT =_(1+x2), ony = 0;
dy dy

(3)

- T---> 0 as y- o
dy

To solve equations (2) numerically we follow Hunt and Wilks [4] or Kuiken [51 and make
a composite transformation which reflects the similarity forms for both x small and x large
and is an adaptation of the classical Gortler method to free convection boundary layers [6].
To do this we write

T= x5(1 + X ) (X, ) , '1 = y(1 + x2)x . (4)
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Using (4), equations (2) become

0/3 1 + x2 [(5 ) 5 f 2d + 1 [(4 + A)2 + ]f 2f

dq7152 + ±)2+ 25 5 5 d

1 ra 1 8,ai 2 11 I f 2f Of d02f

-x [+ I ) + ]( df dfo ax ax df f (5ab)

fdOf 0 doa=e_1 ond a= =;

4t 0 00 (6)

+ + f 5 f, d7l ()2 0, (7a)

1 404----f 1---2x2

Pr d f - 5 f'O=0 (7b)

f"' +I + ] (4+2)ff"- (3+4 )( f do0, (5b8a)

2+ =X+x2 5 5 X5 X

Pr (2+ )f' - (1+ 8)f'=0,

subjecquati onscally using essentially the same method used previously

averaged over the step from x to x + x. This results in two coupled ordinary differential

found to c-1 ong typically only 3 or 4 iterations to achieve convergence (the

difference of any two successive iterates being everywhere less than 10-6). A check was kept

on the errors introduced into the scheme by differencing in the x-direction by going from x

to x + Ax ing first one and then t), wo steps and insis putting that the e quationsce between the two

solutions was everywhere less than 5 Otherwise the step length (a)

p--- 1 f ' - 1 f'O = 0 (7b)

which correspond to a prescribed heat flux (dT/dy)y=o =-x 2 , [1].
Equations (5) were solved numerically using essentially the same method used previously

to solve other free convection problems, as described in some detail in [7] and the details
need not be repeated fully here. The procedure is a marching method in which the
derivations in the x-direction are replaced by forward differences and all the other terms
averaged over the step from x to x + Ax. This results in two coupled ordinary differential
equations which are then differenced using central differences and the resulting sets of
nonlinear algebraic equations solved iteratively by the Newton-Raphson process. This was
found to converge quickly, taking typically only 3 or 4 iterations to achieve convergence (the
difference of any two successive iterates being everywhere less than 10-6). A check was kept
on the errors introduced into the scheme by differencing in the x-direction by going from x
to x + Ax in first one and then two steps and insisting that the difference between the two
solutions was everywhere less than 5-10 - . Otherwise the step length was halved and the
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Fig. 1. Graphs of (a) (d 
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f/d

2
)=,, (b) (x, 0) and (c) f(x, ), calculated from the numerical integration of equations

(5) for kc = -[ .

process repeated until this accuracy criterion was achieved. The integrations started at x = 0
with the solutions given by equations (7) and proceeded stepwise for increasing x.

As a check we started with values of pA > - 1 and found, as expected, that the solution
attained the asymptotic conditions as given by equations (8). This can be seen in Fig. 1
where we give graphs of (d 2f/dO2),o, O(x, 0) and f(x, -o) for the case p. = - 8 (corresponding
to a uniform plate temperature for large x) and Pr = 1 (throughout all the numerical results
quoted are for Pr = 1). We can see that all these quantities approach their asymptotic values
(as given by the broken lines in Fig. 1) as x increases, (d2f/d0q 2),,=, O(x, 0) and f(x, ) go
from the values 1.3744, 1.8728 and 1.5820 at x = 0 to 1.5713, 2.0771 and 1.7757, respectively,
for x large.

However, when we took values of a - , this was found not to be the case, with the
numerical results not now settling onto some constant asymptotic values. It is the structure of
the solution for x large with p. < - ½ that we discuss next. We find that there are two separate
cases to consider, namely p. <- and = -.

3. Asymptotic solution for/.A < -

We first note that the transformation of variables which gives equations (8) is not appropri-
ate for /. < - , as these equations do not then have a solution satisfying boundary
conditions (6) [1]. An alternative is required and we now put

= y/lx . (9)

Note that transformation (9) is the one that gives equations (8) for the critical case t = - 2

Equations (2) become

d 3F + 3 F d2F 1 ( dF)2

g 3 +H5 ag2 5 d
aF d2F dF 2F)

0a d 0 d dX dx 2J

1 d2 H 3 dH 3 dF dF dH aF dH
Pr d- 5 F-- + - H =x x x 'Pr Ac 5 d 5 da _8C x ax _dC)

(c) --

x

(lOa)

(10b)

0 = X5F(X, O , T= x 'H(x, ) ,
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with boundary conditions (3) becoming

d;= dF ==d-x (1+ X 1) on =0;

~~~~dF > 0 HO as; > x ~~~~~~(11)dF
---- >0 H--0 as -oo.

The form of the boundary conditions suggests looking for a solution of equations (10) by
expanding in powers of x' +2 (1 + 2t < 0). Hence we put

F(x, 5) = Fo() + xl+2F() + __+" , H(x, 5) = Ho(;) + x 1+2'H l() + 

When (12) is substituted into equations (10) we obtain at leading order

3 1
F + H+ H FoF - (Fi)2 = 0, (13a)

1 3
HI+ F H =O0, (13b)

subject to the homogeneous boundary conditions

F(O ) = Fo(0) = 0, Hi(O)= 0;
(14)

F-- 0, Ho0 --->0 as -o

(primes are now used to denote differentiation with respect to 5). Equation (13b) has been
obtained by integrating the equation derived from (10b) once, with boundary conditions (14)
satisfied.

The homogeneous problem given by equations (13) and boundary conditions (14) has
arisen previously [1, 8] with a solution (F0, H0 , e) being obtained which has d2 F0 /de2 = 1 on

= 0 (with I((0) = 0.73890 and F(o) = 2.03449 for Pr = 1). The general solution
(Fo , Ho, ) which will have d2 Fo/d 2 = k (say) on =0 can then be found from this
particular solution by the transformation

Fo = kFo0 , Ho = k3Ho, = k-. (15)

To fix the leading-order solution completely we need to determine the value of the
constant k. This is achieved from an integral property of the full boundary-layer problem. To
obtain this we integrate equation (2b) and apply boundary conditions (3) to get

dx J y Tdy) =Pr ( l +2) . (16)

Using the fact that the integral in (16) is zero at x = 0 (from transformation (4)), (16) then
gives

T rdy = +r ds (17)
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For < - , it follows that for x > 1,

o (1 + s2
), ds = I. + O(X2

,+l) (18)

where I = o (1 + x 2) ' dx. This infinite integral can be expressed in terms of the Beta
function [9] as

1 B _3 1 /-F r l21
I.= B (_'U ~~~~~~2r(- (19)2 22 2F(-)

Hence we have that

d T dy = I + O(x 2 + 1) (20)

for x large. Substituting transformation (9) in (20) results in

H dg d = 1 (1 +52) d s . (21)

So that for the leading-order solution in expansion (12), (21) gives, using (15),

k f F;Ho d = I. (22)

Now the integral in expression (22) can be determined from our basic solution (F0, H 0, <),
and, for Pr = 1, we find that J o FH 0 de = 0.866367, which in turn determines k as

k= 1.01369 (-AM) ) ) (23)

With k given by (23), the leading-order solution (F0, H0, ) can then be found using (15).
We are now in a position to consider the next terms in expansion (12). The equations for

the terms of O(x' +2 ' ) are

F" + H + FoF - 7+ 2 FF + ( + 2 FF = 0, (24a)

1 '3 (8 + 2 5 ) -H' + 3FoH- + + 2 F1H + 3 F+'Ho+ - +22 FH,=0. (24b)
Pr 1 5 1 \5(/1 0510\5

Subject to the boundary conditions

F (O)= F(0) O, H(0) = -1;
(25)

F--- O , H --> as -oo.

Then, for a given /x, equations (24) can be solved for F1 and H1 with the solution then
proceeding to higher-order terms. There is a modification to this expansion provided by the
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eigensolutions (Fe, He) at O(x-1 ). These are, in effect, solutions of equations (24) (taking
/x = -1) which satisfy homogeneous boundary conditions and arise because of the arbitrari-
ness in the location of the leading edge in the asymptotic expansion [10]. We find that

Fe = a(2gF6 - 3F) , He = a(2CH; + 3Ho) (26)

for any constant multiple a. The constant a is not determined from the integral condition
(21), which gives, for this term (since there is, in general, no term of O(x-') in the
asymptotic expansion of the integral Jx (1 + s 2

)
' ds) that fJ' (FOHe + FeHo) d; = 0. Sub-

stituting (26) into this integral (and integrating by parts) shows that this condition is satisfied
identically with a then left arbitrary.

There is an exception to this when ji =-1. In which case the eigensolutions and the
perturbation to the leading order from the application of the wall heat flux boundary
condition are both of the same order, O(x-'). The existence of these eigensolutions then
requires the expansion of F(x, ) and H(x, ) to take the form [11]

F(x, ) = Fo() + log F,() + F()+ . ,
x x

(27)

H(x, ) = Ho(;) l H + Ho(g)+ x x

This modification gives for the equations at O(x-),

3 3 2 2
F'' + H, + FF' + 3 F;F[ -; FoF F 1 = a(3FF O - (Fo)2), (28a)

1 3 2 3 8
p H"' + FoH; - FH + F'H + FH = 3a(HF0 + FHO) . (28b)Pr 5 5 5 5

To solve equations (28) numerically we construct two complementary functions (Fa, H,)
and (Fb, Hb) which have F(O0) = 1, H(O) = 0, H(O) = 0 and F(O0) = 0, Hb(O) = 1 and
Hb(0) = 0. Then we construct two particular integrals, the first (Fc, He) has F (0)= 0,
Hc(0) = 0, H'(O) = -1 and satisfies equations (28) with a = 0, the second (Fd, Hd) has
F'd(0) =0, Hd(O) = 0, H(0) = 0 and satisfies equations (28) with a = 1. The complete
solution is then given by

Ft = aF, + bFb + F, + aFd,
(29)

H = aH,, + bHb + Hc + aHd,

for constants a and b. Now, as -o,

5A
H,- A,, F (o ) + B, (i = a, b, c, d) (30)

for constants A, and B,. To satisfy the boundary conditions on F, and H as H-o then
requires

aA + bAb + Ac + aAd = 
(31)

aB + bBb + B + aBd = 0.

101



102 J. H. Merkin and T. Mahmood

However, the existence of eigensolutions (26) means that

AaBb - AbBb = 0 (32)

which, when used in (31), gives an equation for a as

BcA - BaA (33)
A dBa - BdAa

On performing the numerical integrations, we obtained, for Pr= 1, a = 0.10623. The
solution at O(x- ) is not unique as arbitrary multiples of the eigensolutions (Fe, He) can still
be added in.

To complete the discussion of this case we compared the values of the (non-dimensional)
skin friction T, = ( 2

qdy
2

)y =0, plate temperature 0w = T(x, 0) and Yr = I(x, c-) as calcu-
lated from the numerical solution of equations (5) with the results obtained from the
asymptotic series for the case ,. = -1. Graphs of these quantities are shown (plotted against
log x) in Figs. 2. From (9) using the solution for F0 and Ho and the value of k found
previously (for p = -1, I = ½ ir) we have that

Tw - 1.4291x- + · · , w - 1.894x - + · · · , - 2.2916x + · · · (34)

for x > 1. Graphs of the asymptotic expressions given by (34) are also shown in Figs. 2 (by
the broken lines) where we can see that they are all in very good agreement with the values
obtained from the numerical solution, which acts as a good confirmation of the above theory.
The x - 3 /5 dependence of the plate temperature for x large also arises in wall plumes on
adiabatic walls [12], and this can be thought of as the limiting form of our solution since
(d T/dy)y=0 ---> 0 as x --- for all u < 0. However, we find that this power-law variation of
plate temperature for x large arises only for the case when p. < - . We now go on to
complete the discussion by considering the case pA = -

1.2

w

0.9

0.6

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fig. 2(a). Graphs of w calculated from the numerical solution of equations (5) (full line) and from (34) (broken
line) for = -1.
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e

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fig. 2(b). Graphs of 0w calculated from the numerical solution of equations (5) (full line) and from (34) (broken
line) for Ax = -1.

LI).

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fig. 2(c). Graphs of k calculated from the numerical solution of equations (5)
line) for Ix = -1.

(full line) and from (34) (broken

4. Asymptotic expansion for /A = -

Clearly the expansion in powers of x+ 2
, for <- 2 breaks down when E/ = - and an

alternative approach is required. To get an insight into how we might proceed in this case we
use integral condition (17), which becomes for a = -2,

y Tdy= Pr log(x + x+ 1). (35)

Since log(x + Nxx2+ 1) = log x + log 2 + O(x- 2) as x--> this suggests that transformation

103
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(9) should be modified to include terms in log x. So we try

9 = x(log x)o (x, r), T = x -(log x)Oh(x, 7), T = yx -(log x) . (36a)

Result (35) gives oa + 3 = 1 and a balancing of terms in equations (2a) requires a + 3y =
p3 = 2 a + 2y. Hence a = y = 5 and P = with (36a) becoming

4 = xi(log x) (x, ) , T = x -(log x)'h(x, 7), T = yx (log x) . (36b)

Using (36b), equations (2) become

a3q h+32o )1 2 )(db) 2 a( a2 _ a2)
dT3 + 5+51-ogx a 82- 5 + logx)()a7/ = a aTax dx a2

(37a)

1 2h 3 1 h (3 4 ah ad ah)
-- + h -+ o = x o (37b)Pr 72 5 log x dT 5 5 logx d7 d dx dx d

with boundary conditions (3) becoming

o dh 1 (i -2q = 0, = ' =_- 1+x2 on = 0;' d ' 7 d log x x-
(38)

---- >0, h-->0 as 7--.
aT

Equations (37) and boundary conditions (38) suggest looking for a solution of equations
(37) by expanding

O(X, T) = 0o(T) + (log x) - 1 (Tr) + ",

(39)
h(x, 7) = ho(T) + (log x)-'h,(T) + .

At leading order we have

3 1
o1' + ho + 0 hb0 o0 - ; () 2 = 0, (40a)

1 3
ho+ o0h = , (40b)

Pr 5

satisfying the boundary conditions

qb0 (0)= b(0)=0, ho(0)=0; -->0, h 0-0 as 7r o, (41)

(primes are now used to denote differentiation with respect to 7 and equation (40b) has been
integrated once).

This problem is the same as (13) discussed previously and the general solution (00, ho, 7)
can be obtained from the particular solution (F0 , Ho , ) by the transformation

4 = CF, ho = C 0o, = C-½3, (42)
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where we are taking (d 2
0 /dT 2)=o = C for some constant C to be determined. Recall that

the solution (F0, Ho, ) was such that (d2F/d 2)=o = 1.
To find C we use the transformation (36b) in the integral condition (35) to obtain

1 log(x + ) Pr ( log + ( ) ) (43)
kh dr Pr logx log(x+ log 

So that, for the leading-order terms in expansion (39), we require

70'hhodT= 1 or C=( de) . (44)

Using the previously calculated value for the integral in (44) gives

C = 1.08988. (45)

The solution can then proceed to the higher-order terms in expansion (39). At
O((log x) - ') we have the equations

31+ 2 3 , 2 1(46a)

1 3 4 1
P h + 3 ( 0hIh' + Who+ 4Oh1 + 'ho) = 4 Oh o- 1ohF, (46b)Prr 5 h + 1 5 ( +

with boundary conditions

42(0) = 4(0) =0, h;(O) = -1; 4 0, h-0 as T--. (47)

To solve equations (46) numerically we construct a complementary function, (a, ha),
which has 4"(0) = 1 and ha(O) = h'(0) = 0 and satisfies equations (46) with the right-hand
sides put to zero. Since the homogeneous equation derived from (46b) can be integrated
once to h + (ha' ok + hona) = 0 (satisfying all the imposed boundary conditions), it follows
that for this complementary function, ha -O, ---> Da as rT-o for some constant Da. To
this complementary function we add a particular integral, (b, hb), which satisfies equations
(46) fully and has O'(0)= 0, hb(O) = 0 and h(0) =-1. Again we can integrate equation
(46b) to get on applying the imposed boundary conditions

3 1
h + 1 + (Oohb + bho) = 0 ho dT - oh0. (48)

Now, from (44), as T-> , fo Oh 0o di-- 1, so that (48) becomes approximately, for large,

h + h b = 0 (49)

where the terms neglected in (49) are all exponentially small. So that hb --->, b--> Db as
---> (for some further constant Db). The numerical integrations give Da = 8.80458 and

Db = 7.73127. The complete solution is then given by

h = yh + hb

105

0 = YO + b (50)



106 J.H. Merkin and T. Mahmood

where we need to choose the constant y = -Db/Da = -0.87810 so as to satisfy the outer
boundary conditions.

The solution at this stage is still not unique, as we can add in arbitrary multiples of the
eigensolutions (e, he), given by

(Pe = T + O 0 he = Trh + 4ho

This multiple can then be determined using the integral condition (43) that fo (hob' +
hl1 o) dT = Pr -1 log 2.

The non-dimensional quantities Tw, 0w and ip. defined in the previous section can be
calculated by using transformation (36b) and the value of C given by (44) as

Tw - 1.0899 (log x) + ...
X5

w 0.8288 (log x)+ ...

Xs

(52)
X - 2.0937(log x)x5 + ...

as x- co. As a check on the above theory, we solved equations (5) numerically for the case
x = - 2, allowing the solution to proceed to very large values of x. We found, for this case,
that the numerical solution did not quite settle onto an asymptotic limit as it did for the
values of > - ½ but changed only very slowly as x increased. From this solution we

1 1 4
calculated = x5 (logx) 7, w = x5(log x)-5 and * = x (log x) T,, the results are
shown in Table 1. These results do appear to be approaching their respective asymptotic
limits as given by (52) as x is increased, though the approach is rather slow. This is to be
expected as the perturbation to the leading-order solution, which is all we have considered in
(52), is of O((log x) - ) and at the final value of x given Table 1, (log x)-' is only 0.0565,
which is comparable with the difference between the values of T*, 0* and q *: given at this x
and the corresponding asymptotic limits.

Table 1. Values of A = x5 (log X)-5 7, = x5 (log x)-0, and i* = x-5 (log x)-5 Ip as calculated from the numerical
solution of equations (5)

x T. 0B

178 1.255 1.171 1.994
306 1.240 1.139 2.004
562 1.226 1.109 2.013

1586 1.208 1.070 2.025
3634 1.196 1.046 2.032
7730 1.187 1.028 2.037

24114 1.177 1.006 2.044
56882 1.170 0.992 2.048

122418 1.165 0.981 2.051
384562 1.158 0.968 2.055
908850 1.154 0.959 2.058

1957426 1.151 0.052 2.060
6151730 1.146 0.948 2.062

14540338 1.143 0.937 2.064
48094770 1.140 0.930 2.066

1.090 0.829 2.094

(51)
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